Working On High Elevation Tertiary Strata, Southwestern Montana

Lion Mountain, south-central Gravelly Range in southwestern Montana, has about 300 m of Tertiary strata capped by basalt that is about 31 million years in age.

Working on Tertiary strata in the Gravelly Range, southwestern Montana, is sometime daunting to do. The Lion Mountain Tertiary section shown in the photo to the right is one of those places that makes for a grueling day or several days of field work. The Tertiary section unconformably overlies various Paleozoic units, such as Mississippian Madison Group carbonates, Pennsylvanian-Permian quartzite, and Triassic carbonates and red mudstone. And the ascent from these pre-Tertiary rocks to the top of the Tertiary section is worth it – for both vertebrate paleontology and sedimentary features. Current work status in the project that I’m working on with the Raymond M. Alf Museum, Claremont, CA, is that the section contains vertebrates ranging in age from about 40 million years to about 31 million years in age. A tuff unit near the top of the section that we collected has an Ar/Ar age of 31.4+- 0.7 million years. The capping basalt (the dark zone on the top of Lion Mountain) has a reported K-Ar age of 30.8 +- 0.7 million years. Sedimentary features include massive aeolian units and some channeling near the top of the section. A basal surge deposit occurs about 25 m below the capping basalt, signalling the initial pulse of extensive basaltic volcanism in the Lion Mountain locale. Several photos of my most recent Lion Mountain climb illustrate the section’s features and are shown below.

Channel complex near top of Lion Mountain comprised of Paleozoic rock clasts.
Basal surge deposit about 25 m from top of Lion Mountain. Embedded basalt clasts, sand waves, and plane parallel beds characterize this deposit.
Basalt bombs in channel near Lion Mountain crest have paleomag drill holes – a clear sign that someone else has made this climb!
A ladder stashed in the uppermost tree-area on the mountain which is left over from past paleontology expeditions.
The orange baked zone that underlies basalt is evident in this photo. Also note the channel lenses that outcrop randomly across the Tertiary stratal expanse.
About 5 km northwest of Lion Mountain sits the basalt plug of Black Butte. Previous reported isotopic ages range from 23-25 million years, but our preliminary data show an age of about 30 million years for this volcanic feature.
The most pleasant part of the hike in the Lion Mountain area is in the glaciated meadow that lies at the base of the mountain. We’re a little late for the wild flower bloom, but it still is a gorgeous area!

The Gravelly Range, Southwestern Montana: High Elevation Tertiary Rocks

The Gravelly Range is located in southwest Montana, about 10 miles southwest of Ennis, Montana. Much of the range is covered by the Beaverhead-Deerlodge National Forest. The Axolotl Lakes Wilderness Study Area, managed by the Bureau of Land Management, is in the northern part of the Gravelly Range.

Gravelly Range - looking east over Paleozoic rocks to the Madison Range in the far distance.
Gravelly Range – looking east over Paleozoic rocks to the Madison Range in the far distance.

Our field group was interested in looking at Tertiary rocks, so we headed for the Black Butte – Lion Mountain area, the more south-central part of the range. A cold front had just swept through western Montana a few days prior to my field trip. That storm left some snow up on the range crest – yep, that’s right, snow in July. But it did melt off fast and it left vegetation along the Gravelly Range road (the main road that stretches along much of the top of the range’s extent) extremely lush. So it was a gorgeous drive from the Lyon Bridge crossing on the Madison River up to Lion Mountain and Black Butte. And as Black Butte is the highest peak in the Gravelly Range at 10,542 feet in elevation, it was not difficult to find our destination.

Black Butte, at 10,542 feet  in elevation, is the highest peak in the Gravelly Range.
Black Butte, at 10,542 feet in elevation, is the highest peak in the Gravelly Range. Eruptions at Black Butte have a radiometric age date by whole-rock K-Ar of 22.9 Ma.

East side of Lion Mountain as seen from Wolverine Basin. Alkaline basalt caps Lion Mountain, with a K-Ar age date of 30.8 Ma.
East side of Lion Mountain as seen from Wolverine Basin. Alkaline basalt caps Lion Mountain, and has a K-Ar age date of 30.8 Ma.

The Tertiary rocks of interest to us were primarily the Tertiary strata exposed on the west side of Lion Mountain. Fossil fauna from these strata have a North American Land Mammal Age of Whitneyan, and are approximately 29 to 32 million years in age. Carnivore, rodent, insectivore, and rabbit are some of the fauna of the fossil assemblage collected here by past workers.

The west side of Lion Mountain with Tertiary strata exposed under the 30.8 Ma basalt cap.
The west side of Lion Mountain with Tertiary strata exposed under the 30.8 Ma basalt cap.

It was a good workout to reach the top of Lion Mountain, but really was well worth the effort. The Tertiary strata had plenty of features to keep a sedimentologist like myself busy. And the views – just spectacular! To top off the trip – it was obvious that someone had been there before us because we found an aluminum ladder stashed is the trees near the top of the Tertiary exposures. None of us availed ourselves of its use, but maybe next time it will come in handy!

A ladder stashed in the bushes near the top of Lion Mountain. The Snowcrest Range is shown in the distance on the left hand side of the photo. Black Butte pops over the ridge in the photo's upper right.
A ladder is stashed in the trees near the top of Lion Mountain. The Snowcrest Range is shown in the distance on the left hand side of the photo. Black Butte pops over the ridge in the photo’s upper right.

 

 

 

Prospecting For Vertebrate Fossils On Hot Summer Days In Southwestern Montana

The end of July always brings The Webb School students who are interested in paleontology to southwestern Montana. That time is packed with prospecting a variety of Tertiary sites in the hopes of finding interesting vertebrate fossils. This year had its good finds along with persevering through some really hot days. Being on a surface of light-colored rocks under the intense sun while slowly looking for fossils such as rodent jaws, rabbit teeth, or even isolated horse teeth is a tough way to spend a summer day. Even prospecting for larger pieces of fossil vertebrates is no easy day, but the students hung in there. Here’s a few scenes from the prospecting adventures:

The late Eocene strata at Pipestone held the students attention for many hours
The late Eocene strata in the Pipestone area west of Whitehall held the students attention for many hours.

 

Late Tertiary outcrops north of Whitehall, Montana, yielded some interesting horse and camel remains.
Late Tertiary outcrops north of Whitehall, Montana, yielded some interesting horse and camel fossils.

 

A horse jaw and at least part of the skull was found in late Tertiary strata.
A horse jaw and at least part of the skull were found in late Tertiary strata located near Whitehall.

 

Still searching for that elusive fossil....
Still searching for that elusive fossil in the North Boulder Valley….

 

Late Tertiary canid dog skull fossil find from last season's Webb School  paleo students' efforts. Skull is now at the Museum of the Rockies.
Late Tertiary canid dog skull fossil find from last season’s Webb School paleo students’ efforts. The skull is now at the Museum of the Rockies in Bozeman, Montana.

 

 

 

 

 

 

 

For those truly interested in vertebrate paleontology, keep in mind that the renowned Raymond Alf Museum is also on the Webb Schools campus. The museum is definetly worth a visit.