LATE EOCENE CHRONOSTRATIGRAPHY, DEPOSITIONAL ENVIRONMENT, AND PALEOSOL-TRACE FOSSIL ASSOCIATIONS, PIPESTONE SPRINGS, SOUTHWEST MONTANA

Featured

I just received notice from the Geological Society of America (GSA) that our abstract is now accepted for the GSA 2020 annual meeting. I was very much looking forward to going to Montreal for the meeting, but like much else, it will now be virtual. Our presentation is scheduled for the session titled “D23. Recent Advances in Understanding Environmental Changes and Their Effects on Sedimentation”, which will be on Monday, 26, October 2020, beginning at 1:30 PM. And I say our abstract, because my co-authors are: Steve Hasiotis (Department of Geology, University of Kansas, Lawrence, Kansas), Don Lofgren (Raymond M. Alf Museum of Paleontology, Claremont, California,) and Bill McIntosh (New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico). We’re excited to get this abstract out in the public domain as it details the first single-crystal sanidine 40Ar/39Ar ages for the well-known vertebrate locality of Pipestone Springs in southwestern Montana. We also have other significant findings, such as newly-identified trace fossils and the presence of loessites in the Pipestone Springs section. Our paper on these findings is nearing completion, soon to be submitted to a peer-reviewed journal. Anyways, here’s our Pipestone Springs abstract:

Sanidine 40Ar/39Ar ages of lapilli tuffs and the mammalian fauna of Pipestone Springs Main Pocket provide a high-resolution chronostratigraphy of late Eocene strata in the Pipestone Springs area of southwestern Montana. Two felsic lapilli tuffs, with weighted-mean 40Ar/39Ar single crystal sanidine ages of 37.50 + 0.02 Ma and 36.00 + 0.20 Ma, occur within the basal to mid-section of the 55 m of exposed Pipestone Springs strata, whereas the upper 15 m yields a diverse and abundant assemblage of mostly small-bodied middle Chadronian mammals. The older lapilli tuff is an airfall tuff whereas the younger lapilli tuff exhibits some aeolian reworking. Loessites intercalated with paleosols dominate Pipestone Springs deposits. Andic paleosols are developed on the lapilli tuffs. Buried B cambic to weakly developed argillic horizons characterize the remaining paleosols that are also classified as andic because there is a significant component of volcanic grains mixed with identifiable non-volcanic grains in their parent material. All paleosols are extensively bioturbated, containing newly identified trace fossils likely constructed by dung beetles (Coleoptera) based on comparisons to modern and ancient traces attributed to this group. Close examination shows that the tracemakers built these structures in a helical pattern from the inside and outside by adding pelletized sediment from the base upward, such that the architectural elements resemble features of Rebuffoichnus, FeoichnusEatonichnus, and Coprinisphaera. The preserved forms likely reflect a continuum of state of completion by adults and usage by larvae and pupae, and final preservation in the paleosols. The new isotopic age constraints significantly increase the age range of the Pipestone Springs strata to include early Chadronian deposits in addition to its well-known middle Chadronian vertebrate assemblage. Recognition of loessites comprising these strata is also a new interpretation, making these deposits some of the oldest known aeolian Eocene strata in the Great Plains–Rocky Mountains region.

Pipestone Springs Main Pocket vertebrate locality (middle Chadronian).

A High-Elevation Eocene Fossil Vertebrate Site in the Elkhorn Mountains, Southwestern Montana

dogtown1Af

The Dog Town Mine vertebrate fossil locality is an isolated occurrence of Eocene strata found on the divide between the Toston-Townsend Valley (on the east side of the photo)  and the North Boulder Valley (on the western edge of the photo), southwestern Montana.

The Dog Town Mine Tertiary fossil vertebrate locality is nestled on private property within the southern extent of the Elkhorn Mountains, southwestern Montana. The locality is about 20 miles southwest of Townsend, Montana, where Mesozoic and Paleozoic carbonate, quartzite, and red-colored mudstone, siltstone, and sandstone rocks underlie Eocene (Chadronian) strata. These unconformable Eocene strata contain the Dog Town Mine vertebrate fossil locality.

Earl Douglass (yes, that Earl Douglass of the Dinosaur National Monument fame) first collected at the site on Friday, June 27, 1902 (based on transcriptions from Earl Douglass’ journals done by Alan Tabrum and volunteers from the Carnegie Museum of Natural History). According to his journal, Douglass met a man from Toston, Montana, on horseback and this person told him about the Dog Town Mine, which was located on the divide between the Toston/Townsend and North Boulder Valleys. Douglass was headed to the North Boulder Valley anyways, so he rode to the mine where he found invertebrate fossils (brachiopods and bryozoa) in carbonate rock which was in contact with the ore deposit. A Mr. Allen, who he dined with that evening, told him that more fossils could be found a little ways west of the mine. After dinner Douglass rode a short way west of the mine and found banks along a ravine that looked like Tertiary White River beds. Here he found  “Oreodont, Ischyromys, Palaeolagus, Titanotherium, and turtle remains” (June 28, 1902, Douglass Journal entry). This area is the present Dog Town Mine vertebrate fossil locality.

The Dog Town Mine site encompasses all of the light-colored exposures on the right side of the county road.

The Dog Town Mine locality encompasses all of the light-colored exposures on the right side of the county road seen in this photograph.

 

Tertiary strata at the Dog Town Mine are fine-grained, predominantly consisting of siltstone with minor fine-grained sandstone units. The deposits are probably of aeolian origin, originating from areal sediments rich in volcanic ash. These deposits are probably similar lithologically and in mode of origin to those Tertiary White River units found at high elevations within the Laramie Range and Medicine Bow Mountains (Evanoff, E., 1990, Early Oligocene paleovalleys in southern and central Wyoming: Evidence of high local relief on the late Eocene unconformity: Geology, v. 18, p. 443–446; Lloyd and Eberle, 2012, A late Eocene (Chadronian) mammalian fauna from the White River Formation in Kings Canyon, northern Colorado: Rocky Mountain Geology, v. 47, no. 2, p. 113–132).

Vertebrate fossils have been collected at the Dog Town Mine site for various museums since Douglass’ initial collection. The Carnegie Museum of Natural History in Pittsburgh, PA houses a collection from the site as well as the Museum of the Rockies in Bozeman, MT.