Tertiary Geology and Paleontology in the Gravelly Range, Southwestern Montana

Lion Mountain in the Gravelly Range of southwestern Montana. This area is federal land managed by the U.S. Forest Service.

A part of my recent geological field work includes working on high elevation Tertiary strata in the Gravelly Range, southwestern Montana. The Gravelly Range is located in southwest Montana, about 10 miles southwest of Ennis, Montana. For some background on this area and what my field work is about, see an older blog that I posted at Geopostings.

So – now that one field season is done and field data compiled, both my co-worker, Don Lofgren and myself have interpreted some of our data. We recently outlined our work at the Geological Society of America’s (GSA) Rocky Mountain section meeting in Calgary. Alberta. The abstract from our session is given below as well as the poster itself in both a jpeg format and as a link to our  GSA presentation.

“Tertiary strata exposed in four high elevation areas in the south-central
Gravelly Range yield significant assemblages of Late Eocene to Oligocene
mammals. The thickest stratigraphic sections of Tertiary strata are in the
Lion Mountain-Black Butte area. The Lion Mountain section age is based
primarily on American Museum of Natural History collections; the lower
part of this section is Duchesnean-Chadronian (39-33 Ma) and the
uppermost beds are Whitneyan (32-31 Ma). Age of the basal part of the
Black Butte section is Duchesnean-Chadronian based on Harvard Museum of Comparative Zoology collections. Recent collections that include Miohippus indicate a probable Orellan age for uppermost exposures. The Tepee Mountain section is notable for abundant brontothere remains and is probably Duchesnean-Chadronian (approx. 39-33 Ma). The Rapamys site is the oldest vertebrate locality and is late Uintan to early Duchesnean (42-38 Ma) based on recently recovered specimens of RapamysProtoreodon, and Lycophocyon.

The Tertiary strata in this part of the Gravelly Range include fluvial, aeolian, and tufa deposits that are most likely mainly associated with localized Oligocene volcanism. The Lion Mountain section is about 270 meters in thickness; the lower half of the section is largely aeolian, with fluvial units comprising much of the upper section. Based upon age data, the 140 meter Black Butte section correlates to the lower 50-70 meters of the Lion Mountain section. The basal 20 meters of the Black Butte section contain some fluvial features, but much of the remaining section is largely aeolian in origin. Paleosols and extensive burrowing also occur within the Black Butte section. Stratigraphic section thickness decreases rapidly away from the Black Butte-Lion Mountain area, with section thicknesses of about 20 meters for the largely aeolian Rapamys and Tepee Mountain sections. Tufa deposits are located along the west-central edge of the Gravelly Range where they are associated with previously mapped thrust faults. Leaf imprint assemblages of Eocene-Miocene age are contained within these tufas. Strata previously mapped as Upper Cretaceous-Paleocene Beaverhead Formation are now variously reassigned to the lower Cretaceous Kootenai Formation, southwestern Montana Cenozoic Sequence 2, and diverse Quaternary units.” From: Abstract from Geological Society of America Abstracts with Programs. Vol. 49, No. 5 doi: 10.1130/abs/2017RM-293156.

The poster presented at the 2017 Rocky Mountain GSA is available below as a jpeg and at GSA as a pdf.

The Yellowstone Volcanics

Caldera boundaries of Yellowstone area eruptions over the past 2.1 million years (U.S. Geological Survey - http://pubs.usgs.gov/fs/2005/3024/)
Caldera boundaries of Yellowstone area eruptions over the past 2.1 million years (U.S. Geological Survey – http://pubs.usgs.gov/fs/2005/3024/)

Volcanic stratigraphy is hard to ignore when touring through the Teton to Yellowstone National Parks (YNP) area. Three major volcanic eruption cycles occurred during the last 2.1 million years and resulted in hundreds of feet of volcanic rock. The eruption cycles make a good basis for separating the volcanic rock units and consequently there are three major volcanic stratigraphic units. These major units consist of ash-flow tuffs that erupted at the peak of each cycle and include the Huckleberry Ridge Tuff with an age of 2.1 million years, the Mesa Falls Tuff with an age of 1.3 million years, and the Lava Creek Tuff with an age of 0.64 million years.

The type section of the Huckleberry Ridge Tuff is at the head of a landslide scarp on the Flagg Ranch, about 2 miles northeast of a bridge across the Snake River.
The type section of the Huckleberry Ridge Tuff is at the head of a landslide scarp on the Flagg Ranch, about 1 mile northeast of a bridge across the Snake River.

The type sections of the Huckleberry Ridge Tuff and the Mesa Falls Tuff are fairly accessible. The Huckleberry Ridge Tuff type section sits at the head of a large landslide about 1.5 miles south of the YNP’s south gate and 1 mile northeast of the Snake River Bridge. It’s a big landslide, so it’s easy to spot from the highway. The type section mainly contains welded rhyolitic ash-flow tuff. This huge eruptive event (one of the five largest individual volcanic eruptions worldwide) associated with the Huckleberry Ridge Tuff formed a caldera more than 60 miles across.

The type section of the Mesa Falls Tuff is a road cut along Highway 20, about 3 miles north of Ashton, Idaho.
The type section of the Mesa Falls Tuff is a road cut along Highway 20, about 3 miles north of Ashton, Idaho.

The Mesa Falls Tuff type section is really accessible as it is alongside Highway 20, about 3 miles north of Ashton, Idaho. The type section consists of airfall tuff, partially welded tuff that has an agglomeratic base. The eruption associated with the Mesa Falls Tuff formed the Henrys Fork Caldera which is in the Island Park area west of YNP.

A more detailed view of the Mesa Falls Tuff with its airfall ash overlain by partially welded rhyolitic tuff that has an agglomeratic base.
A more detailed view of the Mesa Falls Tuff with its airfall ash overlain by partially welded rhyolitic tuff that has an agglomeratic base.
Roaring Mountain lies within the Lava Falls Tuff area (photo from NPS/Peaco - https://www.nps.gov/yell/planyourvisit/norrisplan.htm).
Roaring Mountain lies within the Lava Creek Tuff outcropping area in YNP (photo from NPS/Peaco – https://www.nps.gov/yell/planyourvisit/norrisplan.htm).

The Lava Creek Tuff type section is much more difficult to access as its type section in the upper canyon of Lava Creek, about 8 miles into the backcountry of YNP. There are a couple reference sections that are easier to reach, and one is in Sheepeater’s Canyon, about 0.5 miles northeast of Osprey Falls. The Lava Creek Tuff is also readily seen in the south-facing cliffs along much of the Gibbon River. The eruption associated with the Lava Creek Tuff created the Yellowstone Caldera, the 35-mile-wide, 50-mile-long volcanic depression that dominates the present YNP landscape.

There are many more volcanic units associated with the three major eruptive cycles. But spending time looking at the major ash-flow tuff units is a good way to begin to delve into Yellowstone geology.