Canadian Rockies – Alberta Badlands Geology Guidebook

The Canadian Rockies to Alberta Badlands geology guidebook is published by the Association for Women Geoscientists.

The Association for Women Geoscientists (AWG) published their first geology field trip guidebook in late 2016 and it is now available for sale to the general public. This guideboook is a collection of geology road logs, associated geological information, and local cultural history of areas within the Canadian Rockies and the Alberta Badlands. The following text is a brief summary of the guidebook:

“TECTONICS, CLIMATE CHANGE AND EVOLUTION – SOUTHERN CANADIAN CORDILLERA: Road Log and Accompanying Narratives From: Calgary – Lake Louise – Icefields – Field – Revelstoke – Fernie -Dinosaur Provincial Park – Calgary”, published by the Association for Women Geoscientists, 2016.

This field trip guidebook is written by Katherine J.E. Boggs and Debra L. Hanneman, and edited by Janet Wert Crampton and Stephanie Yager. It is the AWG’s first fully published field trip guidebook and is a field-tested guide from their two-week 2014 field trip through the Canadian Rockies and Alberta’s Badlands area.

The guidebook is a 209-page geology tour through many of the well-known parts of the Alberta Canadian Rockies, including the Front and Main Ranges of the Canadian Rockies and the Columbia Icefields. The Burgess Shale’s Walcott Quarry, the Okanagan Valley vineyards, and the Rocky Mountain Trench are trip highlights for geo-tours in British Columbia. The field trip guidebook ends with a geology tour of the Crowsnest Pass area on the British Columbia/Alberta border, and with field stops in Alberta’s Dinosaur Provincial Park and at the Royal Tyrrell Museum, Drumheller, Alberta.

The field guide is printed on double-sided 8.5″ x 11″ pages with the guide cover on 100 lb paper and the text on 80 lb paper. It has black wire-o binding and a clear acetate front and a black acetate backing for improved field durability. The guidebook’s cost is $55 USD (which includes shipping), and can be purchased at the AWG online store or by phoning the AWG main office at 303-412-6219.

Cenozoic Sequence Stratigraphy of Southwestern Montana

Much of my research has been focused on Cenozoic sequence stratigraphy of continental basin-fill in southwestern Montana. This approach to the stratigraphy of continental deposits has facilitated correlation of stratigraphic units both within and among the various basins of this area. I recently gave a talk about my work in this area at Montana Tech of the University of Montana. Here’s the You Tube version of my talk:

The Field Season Is Going Strong in Southwestern Montana

My field season is in full swing. I recently spent time with students from the Webb Schools in Claremont, CA, during their annual sojourn to southwestern Montana. We prospected a few Tertiary localities, with the students making some good fossil mammal and fossil invertebrate finds. We were also extremely lucky to have a southwest Montana landowner give us a tour of a buffalo jump that is on his land. The following photos are from our various fossil site and buffalo jump field adventures.

woodin-snails
Tertiary fossil snails (about 25 My in age) at one locality captured the interest of students. Once one snail was found, everyone was intent on finding more.
Bob Haseman talks about a buffalo jump in the Toston Valley. He is standing by one of the many tepee rings associated with the jump site.
Bob Haseman talks about a buffalo jump in the Toston Valley of southwestern Montana. He is standing by one of the many tepee rings associated with the jump site. The small boulders on the surface between Bob and the students are part of a tepee ring.
Webb School students hiking up to the "Looking-Out" site associated with the buffalo jump. A eagle catchment area is immediately below the highest point of the "Looking-Out" site.
Webb School students hiked up to the “Looking-Out” site associated with the buffalo jump. A eagle catchment area is immediately below the highest point of the “Looking-Out” site.
eagle-catchment
The eagle catchment area is a shallow depression where a person would hide beneath brush awaiting the approach of an eagle. A nearby animal carcass would aid the quest to capture a eagle which was then used for its feathers.
Chadronian (about 36 Ma) age rocks yielded a few brontothere teeth and bone fragments.
Chadronian (about 36 My in age) rocks near Three Forks, Montana yielded a few brontothere teeth and bone fragments for the curious students.
Chadronian strata in this area contain brown to reddish, popcorn textured floodplain deposits and whitish-colored fine-sand channel deposits.
Chadronian strata in this area consist of brown to reddish popcorn-textured floodplain deposits that contain paleosols and whitish-colored fine-sand channel deposits.

 

 

A High-Elevation Eocene Fossil Vertebrate Site in the Elkhorn Mountains, Southwestern Montana

dogtown1Af
The Dog Town Mine vertebrate fossil locality is an isolated occurrence of Eocene strata found on the divide between the Toston-Townsend Valley (on the east side of the photo)  and the North Boulder Valley (on the western edge of the photo), southwestern Montana.

The Dog Town Mine Tertiary fossil vertebrate locality is nestled on private property within the southern extent of the Elkhorn Mountains, southwestern Montana. The locality is about 20 miles southwest of Townsend, Montana, where Mesozoic and Paleozoic carbonate, quartzite, and red-colored mudstone, siltstone, and sandstone rocks underlie Eocene (Chadronian) strata. These unconformable Eocene strata contain the Dog Town Mine vertebrate fossil locality.

Earl Douglass (yes, that Earl Douglass of the Dinosaur National Monument fame) first collected at the site on Friday, June 27, 1902 (based on transcriptions from Earl Douglass’ journals done by Alan Tabrum and volunteers from the Carnegie Museum of Natural History). According to his journal, Douglass met a man from Toston, Montana, on horseback and this person told him about the Dog Town Mine, which was located on the divide between the Toston/Townsend and North Boulder Valleys. Douglass was headed to the North Boulder Valley anyways, so he rode to the mine where he found invertebrate fossils (brachiopods and bryozoa) in carbonate rock which was in contact with the ore deposit. A Mr. Allen, who he dined with that evening, told him that more fossils could be found a little ways west of the mine. After dinner Douglass rode a short way west of the mine and found banks along a ravine that looked like Tertiary White River beds. Here he found  “Oreodont, Ischyromys, Palaeolagus, Titanotherium, and turtle remains” (June 28, 1902, Douglass Journal entry). This area is the present Dog Town Mine vertebrate fossil locality.

The Dog Town Mine site encompasses all of the light-colored exposures on the right side of the county road.
The Dog Town Mine locality encompasses all of the light-colored exposures on the right side of the county road seen in this photograph.

 

Tertiary strata at the Dog Town Mine are fine-grained, predominantly consisting of siltstone with minor fine-grained sandstone units. The deposits are probably of aeolian origin, originating from areal sediments rich in volcanic ash. These deposits are probably similar lithologically and in mode of origin to those Tertiary White River units found at high elevations within the Laramie Range and Medicine Bow Mountains (Evanoff, E., 1990, Early Oligocene paleovalleys in southern and central Wyoming: Evidence of high local relief on the late Eocene unconformity: Geology, v. 18, p. 443–446; Lloyd and Eberle, 2012, A late Eocene (Chadronian) mammalian fauna from the White River Formation in Kings Canyon, northern Colorado: Rocky Mountain Geology, v. 47, no. 2, p. 113–132).

Vertebrate fossils have been collected at the Dog Town Mine site for various museums since Douglass’ initial collection. The Carnegie Museum of Natural History in Pittsburgh, PA houses a collection from the site as well as the Museum of the Rockies in Bozeman, MT.

Earl Douglass and the Tertiary Geology of Southwest Montana’s Madison Bluffs

Most vertebrate paleontologists probably think of the spectacular dinosaur finds near Jensen, Utah, when the name Earl Douglass is mentioned. Douglass’s discovery of a partial Apatosaurus near Jensen in 1909  did spark the beginning of his long career with finding more dinosaur material in what we now know as Dinosaur National Monument. But Douglass began his quest for fossil vertebrates while he was in southwestern Montana – several years before he was summoned by the Carnegie Museum of Natural History’s director William Jacob Holland to find dinosaurs.

From the spring of 1894 to 1896, Douglass taught at a one-room school in the lower Madison Valley of southwestern Montana. The school house was located in the lower Madison Valley, directly west of the area known as the Madison Bluffs. These bluffs contain strata that range in age from probably as old as Eocene through the late Miocene. The strata are continental units that include alluvial fan to fluvial trunk stream deposits.

The school house near the Madison Bluffs, southwestern Montana, that Earl Douglass taught at from 1894-1896.
The school house near the Madison Bluffs, southwestern Montana, that Earl Douglass taught at from 1894-1896.
The Madison Bluffs consist of Tertiary fluvail/alluvial fan strata of probably Eocene to late Miocene age.
The Madison Bluffs consist of Tertiary fluvial/alluvial fan strata of probably Eocene to late Miocene age. The Madison Buffalo Jump State Park is located at the northwest edge of this photo.

During his tenure at the lower Madison Valley school, Douglass spent much of his spare time exploring the Madison Bluffs. At the beginning of his teaching contract in 1894, he had very little knowledge of vertebrate paleontology and of the area geology. He initially considered the Madison Bluff beds as Cretaceous in age. But when he found a “tooth very much like a Protohippus” (Earl Douglass journal entry on May 12, 1894), Douglass knew that the beds were younger in age. As time passed, he began to find a significant quantity of fossil vertebrate mammal material within the bluff’s deposits. Consequently, he immersed himself into reading about comparative anatomy so he could readily identify the fossil material. Douglass eventually used his collected fossil material for his 1899 Master’s thesis at the University of Montana – ostensibly the first Master’s degree awarded by the University.

horse jaw from douglass madbluff

Douglass kept journals of his time in the lower Madison Valley, and often detailed both the area geology as well as his fossil finds. Alan Tabrum and volunteers from the Carnegie Museum of Natural History have transcribed many of his journal entries from southwestern Montana. I’ve included two portions of journal entries to illustrate his finding of a horse jaw from the bluffs (above diagram) and one of Douglass’s drawings of “Big Round Top” (an area in the bluffs near the one-room school house) as compared to that same area today in a photo that I took about a week ago.

earldouglass_bigrt

It’s not difficult to understand how Earl Douglass became enthralled with the geology and paleontology of the Madison Bluffs. In addition to the fossil vertebrates, the bluffs contain many other fascinating geological features. Towards the central part of the bluffs (immediately south of the Madison Buffalo Jump State Park), calcic paleosol stacks mark the boundary between most likely Eocene and Miocene strata. The calcic paleosol stacks contain at least two generations of soil profiles (typically minus the A and upper part of the B horizons). Rootlets and burrows are commonly associated with these paleosols.

Volcanic tuffs also occur within the bluff’s strata, which is really handy for those of us who like isotopic age control for southwestern Montana Tertiary deposits. The tuffs could potentially help age constrain the paleosol stacks and sedimentation within the so far non-fossil bearing part of the bluffs. And with the help of the New Mexico Geochronology Lab, a group of us are working on just that aspect of Madison Bluff geology.

Calcic paleosol stacks in the central part of the Madison Bluffs, southwest Montana.
Calcic paleosol stacks in the central part of the Madison Bluffs, southwest Montana.
Roots within the calcic paleosols found at the Madison Bluffs.
Roots within the calcic paleosols found at the Madison Bluffs.
Burrows at the base of a calcic paleosol.
Burrows and roots at the base of a calcic paleosol.
Gray tuff found below calcic paleosol stacks.
Gray tuff found below the calcic paleosol stacks.

Canadian Rockies AWG Field Trip – A Summary

The AWG 2014 Canadian Rockies Field Trip took place from August 28 to September 7, 2014, with a Calgary-area geology pre-trip for early arrivals on August 27.  The main part of the field trip commenced with a mid-morning departure on the 28th from Calgary, and we all headed west along Canada Highway 1 to Lake Louise. After spending two days in the Lake Louise area, we drove north to the Columbia Icefields. A few of us continued further north the next day, on an side trip to Jasper. From the Icefields we toured south to Field, British Columbia, over to Revelstoke, and ended our British Columbia time in Fernie. We then drove east, back into Alberta, and spent time at Dinosaur Provincial Park near Brooks and at the Royal Tyrrell Museum of Palaeontology in Drumheller. The trip ended with our group once more back in Calgary, Alberta.

There were 22 people as full-time field-trippers and two more people on the trip during the Icefields to Field, B.C. part of the trip. Two of the full-time trip participants were students and one of the additional, part-time trip participants, was a student. All of the students on the field trip are from Mount Royal University in Calgary and are students of our field trip leader, Katherine Boggs. Paul Hoffman and Mindy Brugman also helped out for a day or so during the trip. Marcia Knadle and Debra Hanneman did the trip budget and logistics. We had a great field trip guidebook, thanks largely to Katherine Boggs’ efforts. The field trip guidebook, “Tectonics, Climate Change, and Evolution: Southern Canadian Cordillera” will be on sale at the AWG online store soon.

Some of us took to the water and canoed around Moraine Lake near Lake Louise, Alberta. Moraine Lake is located within the valley known as the “Valley of the Ten Peaks” which was once featured on the Canadian twenty dollar bill.
Some of us took to the water and canoed around Moraine Lake near Lake Louise, Alberta. Moraine Lake is located within the valley known as the “Valley of the Ten Peaks” which was once featured on the Canadian twenty dollar bill.
Katherine Boggs talks to the field trip crew about area geology at a stop along the Icefields Parkway in Alberta.
Katherine Boggs talks to the field trip crew about area geology at a stop along the Icefields Parkway in Alberta.
Our intrepid field crew hikes the Athabasca Glacier, one of the six major glaciers of the Columbia Icefield.
Our intrepid field crew hikes the Athabasca Glacier, one of the six major glaciers of the Columbia Icefield.
Paul Hoffman explains features of the Neoproterozoic Old Fort Point Formation near Jasper, Alberta.
Paul Hoffman explains features of the Neoproterozoic Old Fort Point Formation near Jasper, Alberta.
Some of the field trip group took the arduous hike up to the famous Walcott Quarry that is developed within the Cambrian Burgess Shale near Field, British Columbia.
Some of the field trip group took the arduous hike up to the famous Walcott Quarry that is developed within the Cambrian Burgess Shale near Field, British Columbia.
A member of our field trip group shows us one of the Burgess Shale’s trilobites from the Walcott Quarry.
A member of our field trip group shows us one of the Burgess Shale’s trilobites while at the Walcott Quarry.
One of the trip’s frequent rainy days – but we still had fun by the Kicking Horse River at its confluence with the Columbia River, near Golden, British Columbia.
One of the trip’s frequent rainy days – but we still had fun by the Kicking Horse River at its confluence with the Columbia River, near Golden, British Columbia.
Our field trip group poses by Columbia Lake, which forms the headwaters for both the Columbia and Kootenay rivers, and lies within the enigmatic Rocky Mountain Trench near Canal Flats, British Columbia.
Our field trip group poses by Columbia Lake, which forms the headwaters for both the Columbia and Kootenay rivers, and lies within the enigmatic Rocky Mountain Trench near Canal Flats, British Columbia.
The Frank Slide was a must-stop as we drove along the Crowsnest Highway near Blairmore, Alberta. The slide happened on April 29, 1903, when about 82 million tons of limestone fell off of Turtle Mountain.
The Frank Slide was a must-stop as we drove along the Crowsnest Highway near Blairmore, Alberta. The slide happened on April 29, 1903, when about 82 million tons of limestone fell off of Turtle Mountain.
Part of our field trip group discusses Centrosaur Bone Bed 43 during our guided hike at Dinosaur Provincial Park, Alberta.
Part of our field trip group discusses Centrosaur Bone Bed 43 during our guided hike at Dinosaur Provincial Park, Alberta.

Paleontology Podcasts

Palaeocast hosts podcasts on varied aspects of paleontology, including podcasts on mass extinctions, early vertebrate evolution, trilobites, trace fossils, and the fossil forests of Gilboa – just to name a few. Currently there are 24 podcasts posted on the Palaeocast website, with today’s podcast focusing on marsupial evolution. In this latest podcast, Laura Sol does an hour-long interview with Dr. Robin Beck, an expert on marsupial and metatherian phylogenetics, from the University of New South Wales, Sydney, Australia. If you think that marsupial evolution only occurred in Australia, you need to listen to Dr. Robin Beck talk about his research on fossil marsupials. It’s a good way to start the new year!

Reconstruction of the Tingamarra fossil site. The early Australian marsupial Djarthia murgonensis is visible bottom right. Illustration by Peter Schouten from the forthcoming book “The Antipodean Ark”, CSIRO Publishing (From: Palaeocast, Episode 25 - Marsupial Evolution: http://www.palaeocast.com/episode-24-marsupial-evolution/#.UsRwEvRDvGJ.
Reconstruction of the Tingamarra fossil site. The early Australian marsupial Djarthia murgonensis is visible bottom right. Illustration by Peter Schouten from the forthcoming book “The Antipodean Ark”, CSIRO Publishing (From: Palaeocast, Episode 25 – Marsupial Evolution: http://www.palaeocast.com/episode-24-marsupial-evolution).