Working On High Elevation Tertiary Strata, Southwestern Montana

Lion Mountain, south-central Gravelly Range in southwestern Montana, has about 300 m of Tertiary strata capped by basalt that is about 31 million years in age.

Working on Tertiary strata in the Gravelly Range, southwestern Montana, is sometime daunting to do. The Lion Mountain Tertiary section shown in the photo to the right is one of those places that makes for a grueling day or several days of field work. The Tertiary section unconformably overlies various Paleozoic units, such as Mississippian Madison Group carbonates, Pennsylvanian-Permian quartzite, and Triassic carbonates and red mudstone. And the ascent from these pre-Tertiary rocks to the top of the Tertiary section is worth it – for both vertebrate paleontology and sedimentary features. Current work status in the project that I’m working on with the Raymond M. Alf Museum, Claremont, CA, is that the section contains vertebrates ranging in age from about 40 million years to about 31 million years in age. A tuff unit near the top of the section that we collected has an Ar/Ar age of 31.4+- 0.7 million years. The capping basalt (the dark zone on the top of Lion Mountain) has a reported K-Ar age of 30.8 +- 0.7 million years. Sedimentary features include massive aeolian units and some channeling near the top of the section. A basal surge deposit occurs about 25 m below the capping basalt, signalling the initial pulse of extensive basaltic volcanism in the Lion Mountain locale. Several photos of my most recent Lion Mountain climb illustrate the section’s features and are shown below.

Channel complex near top of Lion Mountain comprised of Paleozoic rock clasts.
Basal surge deposit about 25 m from top of Lion Mountain. Embedded basalt clasts, sand waves, and plane parallel beds characterize this deposit.
Basalt bombs in channel near Lion Mountain crest have paleomag drill holes – a clear sign that someone else has made this climb!
A ladder stashed in the uppermost tree-area on the mountain which is left over from past paleontology expeditions.
The orange baked zone that underlies basalt is evident in this photo. Also note the channel lenses that outcrop randomly across the Tertiary stratal expanse.
About 5 km northwest of Lion Mountain sits the basalt plug of Black Butte. Previous reported isotopic ages range from 23-25 million years, but our preliminary data show an age of about 30 million years for this volcanic feature.
The most pleasant part of the hike in the Lion Mountain area is in the glaciated meadow that lies at the base of the mountain. We’re a little late for the wild flower bloom, but it still is a gorgeous area!

Greater Yellowstone Area Eocene to Recent Hydrothermal Springs

The Gravelly Range spring deposits depicted in this photo are late Eocene (probably 34-36 million years in age).

Geologic field work is always fun, but especially so when it turns up something unexpected. Working on Eocene to Recent geology and vertebrate paleontology in the Gravelly Range, southwestern Montana promised to be enthralling because the volcanics, sedimentary units, and vertebrate fossils are at elevations of about 9,000 feet. But to come across extensive, unmapped calcareous spring deposits of probable Eocene age is topping off research efforts.

At this point, I’ll just say that our field team is still at work on the Tertiary spring deposits. We’ve found numerous leaf impressions including those of ginkgo, palm, metasequoia, Fagopsis (extinct member of Beech family), and alder – just to name a few. We’ve shown the plant assemblage collected to date to several paleobotanists, and, at least for age, their take is that the assemblage is probably latest Eocene in age, and bears many similarities to Florissant, Colorado fossil plant assemblages.

Palm frond impression from Gravelly Range spring deposit.

Ginkgo leaf impression from a Gravelly Range spring deposit.

Alnus cone from a Gravelly Range Spring deposit.

The spring deposits in the Gravelly Range are extensive, covering an area roughly 2 miles in length with deposits up to 120 feet in thickness. The springs are best characterized as travertine, although the spring systems’ edges contain clastic fluvial units and both the springs’ edges and pools have features such as plant impressions, root systems, and small travertine balls.

Gravelly Range Eocene spring deposit. Field backpacks in lower left corner for scale.

Because the Gravelly Range is so close to Yellowstone National Park, it is extremely interesting to compare its Eocene spring deposits to hydrothermal units at both the currently active Mammoth Hot Springs (which probably began its activity about 7,700 years ago), and to the fossil travertine found just north of Gardiner, Montana, that formed about 19.500 to 38,700 years ago (Fouke and Murphy, 2016: The Art of Yellowstone Science: Mammoth Hot Springs as a Window on the Universe).

The Gardiner travertine is fairly well exposed because it has been extensively quarried for several decades. Of interest for comparison are numerous plant impressions that occur within microterracettes. Fouke and Murphy (2016) suggest that these may be impressions of sage brush. A photo of the quarried wall with the plant impressions is shown below.

Plant impressions in Gardiner travertine. These impressions may be from sage brush. The travertine in this quarry face is estimated at about 30,000 years in age.

Other features in the Gardiner travertine, now partly covered by graffiti, include a quarry wall that shows terracettes and microterracettes that are outlined by darker lines within the travertine. These features are probably indicative of a proximal slope facies.

Gardiner travertine with its slope facies depicted well in smooth quarry face. The dark, irregular lines delineate terracettes and microterracettes.

Jumping forward in time to the extensive spring deposits of Mammoth Hot Springs (just within the northeast park boundary of Yellowstone National Park), is mind boggling. As in any comparison with rocks as old as Eocene to active deposition, one realizes how much detail is lost over time. But it is still worthwhile to try to compare spring features, so I’ll show a few photos of the Mammoth Hot Springs that may match up with various features of the fossil springs.

Branch and plant fragments in the process of becoming calcified at Mammoth Hot Springs – main terrace.

Calcified plant debris – Mammoth main terrace.

Terracettes – Mammoth main terrace, proximal slope facies.

Trees engulfed by prograding spring activity – Mammoth main terrace.

Travertine balls in small pond – Mammoth main terrace.

Suffice it to say, that the upcoming field season should be a good one, with more work to be done on the Gravelly Range spring deposits. And – it’s always fun to get a trip in to Yellowstone!

Tertiary geology and paleontology of the central Gravelly Range – a project update

The 2017 field crew working at Lazyman Hill. The strata are late Eocene (probably 34-36 million years in age) tufa deposits.

It’s time for our yearly update talk on field work and data compilation for the Tertiary geology and paleontology of the central Gravelly Range project in southwestern Montana. The Madison Ranger District in Ennis, Montana (5 Forest Service Road) will be hosting my talk on Monday, April 2nd at 10am in the Madison Ranger District conference room. We have a project permit from the US Forest Service because our project area lies within the Madison Ranger District – and the USFS District people have been really helpful with our project logistics. Thus, this is the perfect way to let them know what we did this past field season and how the whole project is coming together. The Madison District just sent their public announcement for the talk:

Dr. Hanneman and Dr. Don Lofgren, PhD (Director, Raymond M. Alf Museum of Paleontology, Claremont, CA 91711) and their team have been executing a multiyear study in the Gravelly Range near Black Butte resulting in many interesting paleontological findings right here in our own back yard.  Please join Dr. Hanneman and the Madison Ranger District for an update on this project and what they hope to unearth this year!

It’s a very intriguing project on high-elevation, mainly Eocene-Oligocene Tertiary geology and paleontology (mostly vertebrate and floral). So – anyone with an interest in this and who is in the geographic area, is welcome at the talk!