Canadian Rockies – Alberta Badlands Geology Guidebook

The Canadian Rockies to Alberta Badlands geology guidebook is published by the Association for Women Geoscientists.

The Association for Women Geoscientists (AWG) published their first geology field trip guidebook in late 2016 and it is now available for sale to the general public. This guideboook is a collection of geology road logs, associated geological information, and local cultural history of areas within the Canadian Rockies and the Alberta Badlands. The following text is a brief summary of the guidebook:

“TECTONICS, CLIMATE CHANGE AND EVOLUTION – SOUTHERN CANADIAN CORDILLERA: Road Log and Accompanying Narratives From: Calgary – Lake Louise – Icefields – Field – Revelstoke – Fernie -Dinosaur Provincial Park – Calgary”, published by the Association for Women Geoscientists, 2016.

This field trip guidebook is written by Katherine J.E. Boggs and Debra L. Hanneman, and edited by Janet Wert Crampton and Stephanie Yager. It is the AWG’s first fully published field trip guidebook and is a field-tested guide from their two-week 2014 field trip through the Canadian Rockies and Alberta’s Badlands area.

The guidebook is a 209-page geology tour through many of the well-known parts of the Alberta Canadian Rockies, including the Front and Main Ranges of the Canadian Rockies and the Columbia Icefields. The Burgess Shale’s Walcott Quarry, the Okanagan Valley vineyards, and the Rocky Mountain Trench are trip highlights for geo-tours in British Columbia. The field trip guidebook ends with a geology tour of the Crowsnest Pass area on the British Columbia/Alberta border, and with field stops in Alberta’s Dinosaur Provincial Park and at the Royal Tyrrell Museum, Drumheller, Alberta.

The field guide is printed on double-sided 8.5″ x 11″ pages with the guide cover on 100 lb paper and the text on 80 lb paper. It has black wire-o binding and a clear acetate front and a black acetate backing for improved field durability. The guidebook’s cost is $55 USD (which includes shipping), and can be purchased at the AWG online store or by phoning the AWG main office at 303-412-6219.

Spiralling Global Temperatures

This is one of the best visualizations for global temperature change that I’ve seen. It’s created by Ed Hawkins, a climate scientist in the National Centre for Atmospheric Science at the University of Reading. As noted by Ed Hawkins:

“The animated spiral presents global temperature change in a visually appealing and straightforward way. The pace of change is immediately obvious, especially over the past few decades. The relationship between current global temperatures and the internationally discussed target limits are also clear without much complex interpretation needed.” – Ed Hawkins, Climate Lab Book

Ice Melt, Sea Level Rise, and Superstorms

Dr. James Hansen (Director of Climate Science, Awareness and Solutions Program Earth Institute, Columbia University) and 18 co-authors just published an article – Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous – in the journal Atmospheric Chemistry & Physics. Their article is significant because not only does it raise the issues of superstorms and sea level rise that are associated with human forcing of climate change, but their research also suggests that current climate models do not adequately gauge the effects of ice melt runoff from the Antarctic and Greenland ice sheets. The video embeded below is done by Dr. Hansen and his co-authors and is a good abstract of their recent research findings.

Iceberg Lake Glacier, Glacier National Park – Hiking Through A Changing Landscape

Iceberg Lake is situated in the Many Glacier area of Glacier National Park. The hike is about a 10 mile round trip and gains about 1275 feet in elevation. The trail winds through prime grizzly bear habitat, so be sure to hike with a group, make lots of noise, and carry bear spray. When I hiked the trail back in September, many returning hikers told our group about a grizzly sow and two cubs that were roaming around by Iceberg Lake. The bears actually walked by the lake shore while my group and many others were at the lake, but there were no harmful encounters. However – just this past week, in this same general area, a sow grizzly with 2 sub-adult cubs (I’m guessing that this is the same set of bears that walked by my group at Iceberg Lake) was surprised by a lone hiker and the sow grabbed and shook the hiker. The hiker used his bear spray escaped with puncture wounds to his lower leg and a hand. So – some words of caution about about hiking in bear country!

The Iceberg Lake Trail

A part of the Iceberg Lake Trail - note the u-shape valley sculpted by glacial processes.
A part of the Iceberg Lake Trail – note the u-shape valley sculpted by glacial processes.

The trailhead to Iceberg Lake is behind the cabins near the Swiftcurrent Motor Inn. The first part of the hike, about 1/4 mile, gains about 185 feet. After that initial elevation gain, the trail’s elevation gain moderates. Ptarmigan Falls is about 2.5 miles from the trailhead, and a short way above this is a footbridge that crosses Ptarmigan Creek. The rocky area near the footbridge is a great place for a snack break. Another 1/10 mile beyond the footbridge is the Iceberg Lake Trail junction. The Ptarmigan Trail continues towards the right and goes to Ptarmigan Tunnel and Ptarmigan Lake.Take the other trail branch to continue on to Iceberg Lake. A good trail hike summary for the Iceberg Lake Trail is found at the website “Hiking in Glacier”.

Footbridge over Ptarmigan Creek - good  place for a snack break.
Footbridge over Ptarmigan Creek – good place for a snack break.
Nearing Iceberg Lake as the snow and sleet continue to fall.
Nearing Iceberg Lake as the snow and sleet continue to fall.

The popularity of the trail was clear to me when even on a rainy, sleety, and snowy day,I passed many people on the trail. My group did a leisurely hike, stopping at several places to look at the geology alongside the trail and to do a snack stop by the Ptarmigan Creek footbridge both on the way up and back. It took us about 5 hours for the round trip. That put us back just in time to have a much enjoyed dinner at the Swiftcurrent Motor Inn.

Ah - the trail's end at Iceberg Lake!
Ah – the trail’s end at Iceberg Lake!



The Iceberg Glacier: Recession from 1940 to the Present

Comparisons of the Iceberg Glacier from 1940 to 2015. The photo on the left is a circa 1940 Hileman photo. GNP Archives; the center photo is a 8/14/2008 photo by Lisa McKeon, USGS, and the photo on the right is a 9/6/2015 photo by Debra Hanneman.
Comparisons of the Iceberg Glacier from 1940 to 2015. The photo on the left is a circa 1940 Hileman photo (GNP Archives) the center photo is a 8/14/2008 photo by Lisa McKeon, USGS, and the photo on the right is a 9/6/2015 photo by Debra Hanneman. Click on the photo to enlarge it in a new window.

The Iceberg Glacier is shown in the above photo set beginning in 1940 (this is the photo on the left, which is a Hileman photo from the Glacier National Park Archives) and ending with the 9/6/2015 photo on the right, which I took during my hike to Iceberg Lake. In the 1940 photo, the glacier terminus is quite thick and extends into the basin. By 2015, there is not much left of the glacier. Even with a comparison between the center 2008 photo by Lisa McKeon and my 2015 photo, one can see that much more bedrock is exposed. The older photos are also posted on the US Geological Survey’s Repeat Photography Map Tour Website. For those interested in glacial recession within Glacier National Park, the Repeat Photography website is a valuable resource. The Repeat Photography project is summarized on the USGS website –

This project began in 1997 with a search of photo archives. We used many of the high quality historic photographs to select and frame repeated photographs of seventeen different glaciers. Thirteen of those glaciers have shown marked recession and some of the more intensely studied glaciers have proved to be just 1/3 of their estimated maximum size that occurred at the end of the Little Ice Age (circa 1850). In fact, only 26 named glaciers presently exist of the 150 glaciers present in 1850.

Trail Geology

Sheet sands interbedded with muds in Proterozoic Grinnell Formation.
Jeff Kuhn points out sheet sands interbedded with muds in Proterozoic Grinnell Formation.

Much of the Iceberg Lake Trail winds through the Grinnell Formation, which is a Proterozoic geologic unit within the Belt Supergroup. As Callan Bentley has succintly said of the Belt Supergroup rocks in Glacier National Park:

The rocks exposed firstly from the top down are old sedimentary rocks of the Belt Supergroup. It is called “Belt” after Belt, Montana, and “supergroup” because it is immense. These rocks were deposited in a Mesoproteozoic (1.6-1.2 Ga) sea basin, and show little to no metamorphism despite their age.

Rip-up clasts in Proterozoic Grinnell Formation.
Rip-up clasts in Proterozoic Grinnell Formation.

I was lucky to be hiking with Jeff Kuhn from Helena, Montana, who has done much work with Belt Supergroup rocks in the Glacier Park to Whitefish Range areas. Jeff stopped us at several locations along the trail to look more closely at features within the Grinnell Formation. In general, the Grinnell Formation consists of sandstone and argillite and is approximately 1740-2590 feet thick. It has a deep brick-red color owing to its contained hematite and because it was deposited in a shallow oxygen-rich environment. Sedimentary features that are consistent with the shallow water depositional interpretation include mudstone rip-up clasts, mudcracks, and ripple marks.

Mudcracks preserved in the Proterozoic Grinnell Formation.
Mudcracks preserved in the Proterozoic Grinnell Formation.

All told, it was a hike well worth doing, even if you are not a geology enthusiast!

Ripples preserved in the Proterozoic Grinnell Formation.
Ripples preserved in the Proterozoic Grinnell Formation.


IPCC Hones Its Language on Climate Change

The Athabasca Glacier, a part of the Columbia Icefields in Alberta, Canada, is receding on an average of 16 feet per year.
The Athabasca Glacier, a part of the Columbia Icefields in the Rocky Mountains of Alberta, Canada, has receded 0.93 miles (1.5 km) over the last 125 years.

Yesterday the Intergovernmental Panel on Climate Change (IPCC) released its latest Synthesis Report (SYR5) – a summary of the IPCC’s Fifth Assessment Report (AR5) on the state of knowledge on climate change. The big news with the SYR5’s release is the change in language used within the report – words like “unequivocable” and “clear” now replace the earlier usage of “probable” and “likely” when describing global warming and the role that human activity has played in the temperature increase. Text from the SYR5 underscores this major language shift:

 “Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, and sea level has risen.”


“Human influence on the climate system is clear, and recent anthropogenic emissions of greenhouse gases are the highest in history.”

The SYR5 summarizes IPCC’s three other major reports on various facets of climate change that were released in 2013-2014. These reports are all available from the IPCC website:

  • Climate Change 2013 – The Physical Science Basis;
  • Climate Change 2014 – Impacts, Adaptations, and Vulnerability; and
  • Climate Change 2014 – Mitigation of Climate Change.

The Carbon Brief 11/2/2014 blog gives a listing and good, brief descriptions of what else is noteworthy in the SYR5. Here’s a quick recap on their list:

  • Global warming continues unabated
  • Human influence on warming is clear
  • Ocean acidification, sea level rise, glacial ice decline
  • IPCC’s new carbon budget
  • Consequences of inaction – climate change impacts
  • Low carbon transition – costs and savngs

New ACEEE Analysis – Why Is Electricity Use No Longer Growing?

The dynamics of electricity use are complicated. But with the ongoing muddlings regarding U.S. energy policy and the looming specter of climate change, it becomes critical that we do understand electricity usage. A new ACEEE (American Council for an Energy-Efficient Economy) analysis by Steven Nadel and Rachel Young proposes that energy efficiency has become an important factor in U.S. electricity use. As noted by the authors:

Prior to the 1970s energy crises, electricity sales in the United States were growing by more than 5% per year, and as recently as the early 1990s, electricity sales were growing more than 2% per year. In the past few years, growth has essentially stopped: retail electricity sales in 2012 were 1.9% lower than sales in 2007, the peak year. Some observers have attributed this stalled growth to the 2008 economic recession, while others have suggested a variety of other factors. In this paper, we undertake several analyses to consider which factors best explain changes in electricity use in recent years. Our hypothesis is that the recession alone cannot explain the recent stagnation in electricity consumption. We instead hypothesize that electricity savings from energy efficiency programs and from other efficiency efforts such as appliance standards and building codes are having a broad national impact on electricity consumption in the United States, possibly contributing significantly to the recent decline in electricity consumption.

The white paper for this analysis is available at: Why Is Electricity Use No Longer Growing

The U.S. Energy-Climate World Upheaval: 2008-2014

If the recent U.S. energy-climate world seems like it’s in upheaval, that’s because it is. Amy Harder of the National Journal, just posted a good synopsis of the monumental changes in the U.S. energy-climate world with her article – The Five Biggest Energy Changes in the Past Six Years. Harder notes:

In 2008, Washington was grappling with what it thought was a scarce supply of oil and natural gas, energy prices were high, presidential candidates of all stripes embraced action on global warming, and President Obama was riding to victory on his slogan of change you can believe in.

Today, six years later, who would have thought this much change would come to the energy and climate world this fast? Here are the biggest changes over the past six years.

The changes that Harder elaborates on include:

–          America’s oil and natural-gas boom

–          The rise of EPA and the fall of climate-friendly Republicans

–          Environmental movement flipping from top down to bottom up

–          Imports and exports of fossil fuels with exports up and imports down

–          Renewable-energy growth, which is objectively significant but still relatively small

Overall, I think this is a helpful, brief summary of the U.S. energy-climate world – basically a good starting point for those interested in more detail on this area.

Greenland’s Fastest Glacier Now Flowing At Record Speeds

Jakobshavn Isbræ, Greenland’s fastest flowing glacier, has been moving even faster over the past several years. The Jakobshavn Glacier, or Jakobshavn Isbræ, is located on the west coast of Greenland and drains a major part of the Greenland ice sheet into a deep ocean fjord. Accordingly, the Jakobshavn Glacier could add significantly to sea level rise.

Recorded speeds of glacial flow during the summer of 2012 topped out at more than 17 kilometers per year, or over 46 meters per day. In fact, the transient summer speeds observed for 2012 probably represent the fastest observed speeds for any outlet glacier or ice stream in Greenland or Antarctica. In a paper published recently in The Cryosphere, Joughin and others, note that:

We have extended the record of flow speed on Jakobshavn Isbræ through the summer of 2013. These new data reveal large seasonal speedups, 30 to 50% greater than previous summers. At a point a few kilometres inland from the terminus, the mean annual speed for 2012 is nearly three times as great as that in the mid-1990s, while the peak summer speeds are more than a factor of four greater. These speeds were achieved as the glacier terminus appears to have retreated to the bottom of an over-deepened basin with a depth of 1300m below sea level. The terminus is likely to reach the deepest section of the trough within a few decades, after which it could rapidly retreat to the shallower regions 50 km farther upstream, potentially by the end of this century.

The warming trend in the Arctic correlates with Greenland’s glaciers thinning and retreating progressively inland. The rapid retreat of the Jakobshavn Isbræ, however, is due not only to the warming trend, but to a number of feedbacks. The primary control on the glacial flow now is the physical location of the glacier’s calving front. The calving front is currently located in a deep area of its outlet fiord, an area where the underlying rock bed is about 1300 meters below sea level. As the glacier loses ice in this area – basically the ice in front that is holding back the flow – the flow speeds up.

The contribution to sea level rise from the Jakobshavn Isbræ may be significant. One of the study’s authors, Ian Joughlin, is quoted in Science Daily, 2/3/2014, as saying:

We know that from 2000 to 2010 this glacier alone increased sea level by about 1 mm. With the additional speed it likely will contribute a bit more than this over the next decade.

So what should we expect for the Jakobshavn Isbræ’s future? Joughlin and others summarized this by:

Thus, the potential for large losses from Greenland is likely to be determined by the depth and inland extent of the troughs through which its outlet glaciers drain. These features are only beginning to be well resolved by international efforts such as NASA’s Operation IceBridge. The relatively sparse data collected thus far indicate that, with its great depths and inland extent, Jakobshavn’s Isbræ is somewhat unique (Bamber et al., 2013), suggesting that it may be difficult for the majority of Greenland’s outlet glaciers to produce or to sustain such large increases in ice discharge.

Of interest may be an earlier Geopostings on “Chasing Ice” that showed a 2012 huge calving event from the Jakobshavn Isbræ.

Natural Gas and Climate Change

The rise in natural gas production, particularly in the U.S., has unquestionably impacted the global energy equation. Fueled by the unconventional-natural-gas revolution, natural gas is now a significant factor in the U.S. and global energy mix. As Sonal Patel summarized from the International Energy Agency’s (IEA) 2013 World Energy Outlook (WEO-2013):

By 2035, natural gas demand will outpace that of any other individual fuel and end up nearly 50% higher than in 2011. Demand for gas will come mostly from the Middle East—driven by new power generation—but also from Asian countries, including China, India, and Indonesia, and Latin America. Power generation continues to be the largest source of gas demand, accounting for around 40% of global demand over the period. New gas plants, meanwhile, are expected to make up around a quarter (or 1,000 GW) of net capacity additions in the world’s power sector through 2035.

Given the seemingly inevitable scenario of natural gas playing a significant role in the energy mix (and particularly in U.S., given the recent unconventional-natural-gas boom), how will its increased use influence climate change and future energy policies? The tenet that natural gas, being a cleaner-burning fuel, will lessen a carbon footprint has been bandied around for awhile now. Amy Harder, from National Journal, picks up this thread with:

First the aforementioned wisdom: Natural gas is unquestionably helping the United States reduce its climate footprint. Our nation’s greenhouse-gas emissions have dropped to levels not seen since the 1990s, thanks in part to this cleaner-burning fuel. Natural gas produces half the carbon emissions of coal and about a third fewer than oil. This is why everyone in the Obama administration, including the president himself, can’t talk enough about the climate benefits of natural gas.

Three disparate factors make the relationship between natural gas and climate change not so unequivocally simple and good. Concerns about methane emissions persist, but notwithstanding that challenge, two greater problems loom: First, shifting significantly away from coal to natural gas doesn’t get the planet anywhere close to the carbon-reduction levels scientists say we must reach. And second, while the natural-gas boom is great for the economy and the immediate reduction of greenhouse-gas emissions, it has deflated the political urgency to cut fossil-fuel dependence, which was more compelling when we thought our resources of oil and natural gas were scarce. We have a great problem of energy abundance.

Obviously, natural gas is not the total panacea for “fueling” the transition to a carbon-negative energy mix. But given the current and predicted production/market conditions, it will be a considerable part of the future global energy equation.

Rising Seas and Carbon Footprint Visualizations

National Geographic "Rising Seas" map of projected North American shoreline change from ice melt. Map from:
National Geographic “Rising Seas” map of projected North American shoreline change from ice melt. Map from:

New sets of interactive maps help to visualize both the impact of rising seas on the world’s coastlines and U.S household carbon footprints.National Geographic has posted a set of world-wide interactive maps that show new coastal outlines resulting from the premise of all ice melting and thus raising sea level approximately 216 feet. As noted by the authors:

There are more than five million cubic miles of ice on Earth, and some scientists say it would take more than 5,000 years to melt it all. If we continue adding carbon to the atmosphere, we’ll very likely create an ice-free planet, with an average temperature of perhaps 80 degrees Fahrenheit instead of the current 58.

Continuing on the topic of adding carbon to the atmosphere, University of Berkeley researchers, Christopher Jones and Daniel Kammen, looked at the spatial distribution of U.S. household carbon footprints. The researchers first point out the obvious in that carbon footprints in densely populated areas are typically low because of smaller residences, shorter commutes, and the availability of mass transit. Here’s the catch though – the suburbs have an unusually large carbon footprint. In fact the footprint is so large that it negates the “green” urban core. As Jones and Kammen summarize:

As a policy measure to reduce GHG emissions, increasing population density appears to have severe limitations and unexpected trade-offs. In suburbs, we find more population- dense suburbs actually have noticeably higher HCF, largely because of income effects. Population density does correlate with lower HCF when controlling for income and household size; however, in practice population density measures may have little control over income of residents. Increasing rents would also likely further contribute to pressures to suburbanize the suburbs, leading to a possible net increase in emissions. As a policy measure for urban cores, any such strategy should consider the larger impact on surrounding areas, not just the residents of population dense communities themselves. The relationship is also log−linear, with a 10-fold increase in population density yielding only a 25% decrease in HCF. Generally, we find no evidence for net GHG benefits of population density in urban cores or suburbs when considering effects on entire metropolitan areas.

U.S. Average Annual Household Carbon Footprint by Household. "Source: UC Berkeley CoolClimate Network, Average Annual Household Carbon Footprint (2013)"
U.S. Average Annual Household Carbon Footprint by Household. “Source: UC Berkeley CoolClimate Network, Average Annual Household Carbon Footprint (2013)”